

 © Copyright 2021, Proceq SA 2

 © Copyright 2021, Proceq SA 3

Table of Contents

1. Safety and Liability ... 4
1.1 Safety and Usage Precautions .. 4
1.2 Liability and the “Software License Agreement”.. 4

2. Overview ... 5
2.1 Scope / Intended Use .. 5
2.2 Purpose ... 5
2.3 Solution.. 5
2.4 Requirements, prerequisites, limitations ... 6
2.5 Abbreviations ... 6

3. Parts of PqRemote .. 7
3.1 File and directory overview.. 7
3.2 The PqRemote library ... 8
3.3 The Samples ... 12

4. Remote commands low level Protocol description .. 14
4.1 Preamble ... 14
4.2 General Syntax .. 14
4.3 Samples... 15

5. Remote ASCII commands .. 16
5.1 General remarks and rules .. 16
5.2 Overview.. 16
5.3 Detailed command description .. 19

 © Copyright 2021, Proceq SA 4

1. Safety and Liability

1.1 Safety and Usage Precautions

This manual contains important information on the safety, use and maintenance of the Platform
remote control package software. Read through the manual carefully before the first use of the
software. Keep the manual in a safe place for future reference.

1.2 Liability and the “Software License Agreement”

Our “General Terms and Conditions of Sale and Delivery” apply in all cases.
All information contained in this documentation is presented in good faith and believed to be
correct. Proceq SA makes no warranties and excludes all liability as to the completeness and/or
accuracy of the information.

The subject of the license is the software that Proceq dispatches to the customer by electronic
means, in the version as sent and in the form as received by the customer. Proceq accepts no
responsibility for any properties of the software, either general or in terms of its suitability for any
particular purpose. The customer carries the risk that the software may not meet his
expectations in terms of results or performance. Proceq shall also not be liable for any damage
suffered by the customer or third party irrespective of whether the damage is the direct or
indirect consequence of installing or using the software or is in any way connected with
installation or use of the software. In particular, Proceq shall not be liable for loss of earnings,
profit or savings, or for loss of or damage to software or data. This applies even if Proceq is
expressly made aware of such risks. Exclusion of liability applies in particular to all direct,
indirect or consequential damage that may arise to the customer because the software fails to
function properly or at all for whatever reason.

 © Copyright 2021, Proceq SA 5

2. Overview

2.1 Scope / Intended Use

This document describes the software part of the Platform remote control package including the
syntax of several Proceq remote commands.
The target audience is Software Engineers who want to embed Platform indicating devices (e.g.
Equotip 550, Profometer PM-6, and Pundit PL-2) into their own Applications.

2.2 Purpose

Some customers want to use their Proceq device in a (semi-) automated production.
Some want to be able to get the measurements into their own Software and databases to be
further processed or stored without the need of Proceq Link Software and overhead of
unneeded manual work.
Some might want to remotely setup their device into a specific, well defined measurement mode
with one click.
Some have other needs or ideas about how their Proceq device has to be embedded into their
workflow.

The purpose of the Platform remote control package add-on is to fulfill as many of these
customer needs as possible in a most flexible way.

2.3 Solution

The Proceq platform indicating device has two physical communication interfaces to a PC
(Ethernet and USB). On each of these interfaces it listens to incoming commands and sends out
data accordingly.

The commands are 2 (legacy) or 4 bytes ASCII followed by a well defined number of
parameters per command. They are documented in here and can be used by Software
Engineers in their own applications.

To make life easy for programmers under MS Windows, Proceq provides an interface header
file and a DLL they can use (aka PqRemote library). This DLL provides functions for device
connection, sending commands and receiving data. In addition, application examples show how
to use the PqRemote library.

Programmers under Linux and other Operating Systems will have to open the interface and
connect to the device by themselves. They must know and use the low level escape and
acknowledge sequences together with the ASCII commands. This is a bit of work, but they still
can use their Proceq platform device remotely and in an automated environment.

 © Copyright 2021, Proceq SA 6

2.4 Requirements, prerequisites, limitations

To avoid problems during remote connection please take care of the following:

 Make sure the device is powered on, connected to the PC, and the application is
running.

 If possible, have the device powered with the AC adapter.

 Disable power management of the device: Read the operating instruction of your device
in case you need help regarding this.

 The Equotip 540 versions don’t support PqRemote. Upgrade to Equotip 550 if you need
PqRemote.

 Make sure, the measurement series are closed either automatically or remotely after a

certain amount of measurements (see chapter 5.3 SLEN).

 Make sure you use the latest device firmware and the latest Platform Remote Control
Package (see chapter 5.1.3 Missing commands, missing functionality)

2.5 Abbreviations

Term Description
HW Hardware

SW Software

USB Universal serial bus

PC Personal Computer

DLL Dynamic Link Library

 © Copyright 2021, Proceq SA 7

3. Parts of PqRemote

3.1 File and directory overview

Please find below an overview of the files in the Platform Remote Control Package

PqRemote_V_x_y_z.zip.

This package should be downloadable via Link tool and the Proceq homepage. It may be part of
the software that comes along with the Proceq product you bought.

Contents of “PqRemote” Platform Remote
Control Package

Description

Documentation Folder with Package Documentation

 Platform Remote Control Package_OI_E.pdf This document

SourceCode Folder with application samples using PqRemote

 PqRemoteDemoDLL
Sample which uses PqRemote.dll,
PqRemoteX64.dll

 res Folder containing resource files

 . resource files

 PqRemoteDemoDLL_VS9_PC.vcproj Visual Studio 2008 project file

 PqRemoteDemoDLL_VS9_PC. sln Visual Studio 2008 solution file

 PqRemoteDemoDLL_VS14_PC.vcxproj Visual Studio 2015 project file

 PqRemoteDemoDLL_VS14_PC. sln Visual Studio 2015 solution file

 PqRemoteDemoDLLDlg.cpp
The source file using the PqRemote library with
PqRemote.dll (PqRemoteX64.dll for x64)

 PqRemoteDemoDLL.cpp
The main source file. Defines the application and
starts the dialog

 . Other C++ source and include files.

 PqRemoteDemolib
Sample which uses PqRemoteX64.dll,
PqRemote.dll together with the import library

 PqRemoteDemolibDlg.cpp
The source file using the PqRemote library with
PqRemote.lib import library and PqRemote.dll

 . Similar files as in PqRemoteDemoDLL

Binaries
Folder with the PqRemote libraries plus executable
samples

 PqRemote.h The PqRemote interface header file

 PqRemote.dll The 32 bit PqRemote dynamic library

 PqRemote.lib The 32 bit PqRemote import library

 PqRemoteX64.dll The 64 bit PqRemote dynamic library

 PqRemoteX64.lib The 64 bit PqRemote import library

 DemoRemote.exe
Sample which uses SCSH and KEYB to remotely
control the device

 PqRemoteDemoExcel.xlsm
Sample which shows how to use PqRemote in
Excel with 10 Measurements max.

 PqRemoteDemoExcel64.xlsm Same as above but for x64 with newer Excel

 PqRemoteDemoExcel64_2.xlsm 2
nd

 version for x64 with Excel 2007and newer.

 PqRemoteDemoExcel500.xlsm
Sample which shows how to use PqRemote in
Excel with 500 Measurements max.

 PqRemoteDemolib_VS14_PC.exe
The resulting .exe of PqRemoteDemolib built with
Studio 2015 for 32 bit (Win32)

 PqRemoteDemoDLL _VS9_PC.exe
The resulting .exe of PqRemoteDemoDLL built
with Studio 2008 for 32 bit (Win32)

 PqRemoteDemolib_VS9_PCX64.exe
The resulting .exe of PqRemoteDemolib built with
Studio 2008 for 64 bit (x64)

 PqRemoteDemoDLL_VS14_PCX64.exe
The resulting .exe of PqRemoteDemoDLL built
with Studio 2015 for 64 bit (x64)

 © Copyright 2021, Proceq SA 8

3.2 The PqRemote library

3.2.1 PqRemote.h

The interface header file describing the functions exported by PqRemote.dll and
PqRemoteX64.dll

If you are programming in C or C++, you should be able to include this header file into your
application and use either the functions as declared in the interface header
(see PqRemoteDemoLib) or the defined pointers together with GetProcAddress
(see PqRemoteDemoDLL).

If you are programming in another language, you can use this file only for documentation
purpose and will have to write your own interface file or use the exported methods of the
PqRemote.dll in another way. Take a look at the PqRemoteDemoExcel.xlsm and
PqRemoteDemoExcel500.xlsm which shows the usage of the DLL in Excel with Visual Basic
macros.

3.2.2 PqRemote.dll, PqRemoteX64.dll

This dynamic link library contains the function implementation declared in PqRemote.h. It has to
be distributed together with your application. It should be located in the same folder as the
application or in the appropriate windows system folder.
PqRemote.dll is for 32 bit applications, PqRemoteX64 is for 64 bit applications. The appropriate
dll is compatible with 32 bit / 64 bit applications for Windows XP, Windows Vista, Windows 7,
Windows 8.1 and Windows 10. The normal issues running 64 bit applications on 32 bit Windows
versions apply, so for 32 bit Windows you should use the 32 bit dll and build a 32 bit application.
If you have to write your application for another OS, see [4. Remote commands low level
Protocol].

3.2.3 PqRemote.lib, PqRemoteX64.lib

This is an import library describing the exports of the DLL. It is not a static library that can be
linked to your application. You still have to distribute the PqRemote.dll or PqRemoteX64.dll
together with your application, but this import library simplifies the usage of the DLL if you are
programming in C++, see PqRemoteDemoLib as a sample project.

3.2.4 The exported functions

3.2.4.1 Data Types, Specifiers and Modifiers

Please find below the data types, specifiers and modifiers used in exported functions.
NOTE: The specified length of data types equals to the amount of storage required in Microsoft
C++.

char An integral type with a size of 1 byte
short An integral type with a size of 2 bytes
long An integral type with a size of 4 bytes
char * A pointer (4 bytes Win32, 8 bytes x64) to a memory area containing data of type char.
void * A pointer (4 bytes Win32, 8 bytes x64) to a memory area containing unspecified data

type.
bool An integral type that can have the value true or false. Its size is 1 byte

signed The following data type is signed. If neither signed nor unsigned is specified, the type is

assumed signed.
unsigned The following data type is unsigned.
const Here: Specifies that the following variable will not be modified in the function.

 © Copyright 2021, Proceq SA 9

3.2.4.2 PQ_CheckCompatibility ()

unsigned long PQ_CheckCompatibility(const unsigned short mainVersion,

 const unsigned short sideVersion);

Description
Checks if the loaded DLL is compatible with the interface version you use in your application.

The Product Version of DLLs has the format a.b.c.d and can be read out manually in file explorer

under properties. Where a is the main version and b is the side version (c and d can be ignored for our

compatibility check). The main and side version numbers (a.b) are defined in PqRemote.h, too:

#define PQ_REMOTE_INTERFACE_MAIN_VERSION 1

#define PQ_REMOTE_INTERFACE_SIDE_VERSION 0

So you can do the check in your application like in the sample code snippet below:

unsigned long result=PQ_CheckCompatibility(PQ_REMOTE_INTERFACE_MAIN_VERSION,

 PQ_REMOTE_INTERFACE_SIDE_VERSION);

if(result > 1) return error;

Parameters
mainVersion [IN] The main version number of the PqRemote interface (PqRemote.h) you are

using.
sideVersion [IN] The side version number of the PqRemote interface (PqRemote.h) you are

using.

Return value
0 = Everything ok, the version matches.
1 = The side version of the dll is newer, but the dll is backwards compatible ok.
2 = The side version of the dll is older, you should use a new dll.
3 = The dll main version does not match, do not use this dll with your application.
4 = An unexpected Software problem occurred.

 © Copyright 2021, Proceq SA 10

3.2.4.3 PQ_ConnectDevice ()

unsigned long PQ_ConnectDevice(const unsigned short devType,

 const unsigned short commPort,

 const bool scanPort,

 const unsigned short portNr,

 const char *ipAddress,

 const unsigned long waitMS);

Description
Connect to a Proceq device of type devType using the communication Port (commPort).

You receive a device handle > 0 in case of success or 0 in case of failure.

The parameters which are not needed by the chosen commport are ignored.

E.g. if you choose 4 (Ethernet), it does not matter what you specify in scanPort and portNr.

Parameters
devType [IN] Specifies the Proceq device type you want to connection with:

0 = Equotip3; 1 = Piccolo; 2 = SilverSchmidt; 3 = Profoscope; 10 = Platform
commPort [IN] The communication port you want to use for the connection:

1 = Serial(RS232); 2 = USB; 4 = Ethernet

NOTE: if you use USB (2) and have more than one device of the appropriate
type connected to the PC via USB, the connection will be established with the
first device found.

scanPort [IN] False = uses only portNr
True = scans ports until a device is found or the maximum port number is
reached (255).
This parameter is only used when comport is 1 = Serial (RS232).

portNr [IN] The serial COM port number the device is connected to (only RS232).
ipAddress [IN] The IP address of the device as string e.g. "192.168.0.204" (only Ethernet).

Socket = 3728 (0xE90)
waitMS [IN] Maximum time in [ms] to wait in this method.

NOTE: If you are using Ethernet, the underlying socket (3728) might still be

working in case you set waitMS < 25000 ms. This means that the responsible

thread in the DLL cannot process any other ConnectDevice before the socket
responded.

Return value
 0 = No device was found or the timeout waitMS occurred.
> 0 = A handle to the device that was found. You will need this handle as parameter for

any other function which communicates with the device.

3.2.4.4 PQ_DisconnectDevice ()

bool PQ_DisconnectDevice(const unsigned long deviceHandle);

Description
Disconnects the device previously connected with PQ_ConnectDevice().

Parameters
deviceHandle [IN] The handle to the device you want to disconnect.

Return value
false The device handle was invalid (no connected device with this handle was found).
true The connection was successfully closed.

 © Copyright 2021, Proceq SA 11

3.2.4.5 PQ_SendCMD ()

long PQ_SendCMD(const unsigned long deviceHandle,

 const char *cmd,

 char *reply,

 const unsigned long maxReplyLen,

 const long timeout);

Description
Send an ASCII command (cmd), see [5. Remote ASCII commands] to the device and receive the

reply. The return value is the reply length or -1 in case of failure.

With few exceptions, the answer of all commands can be received with the reply buffer of this function
immediately.

NOTE: You are responsible for the reply buffer (you have to allocate and free the memory assigned to
the buffer). A reply buffer size of 128 bytes should be enough for the reply of all commands except for

the command "DIRS".

All commands acknowledge here, but with few commands, additional data must be received using

[3.2.4.6 PQ_Read ()]. These commands are: "HELP", "SCSH", "GETF", "EMSG"

Parameters
deviceHandle [IN] The handle to the device you want to send the command to.
cmd [IN] The null terminated ASCII command string including its parameters.

reply [IN]
A pointer (memory address) to the buffer where the reply from the device will
be stored.

 [OUT] The ASCII reply from the device.
maxReplyLen [IN] The size of the reply buffer in bytes.

timeout [IN]
The read and write timeout of the connection in [ms]. The function will return
if this timeout elapsed while sending the command or receiving the reply.
If you specify -1, the default timeout will be used.

Return value
-1 An error occurred (connection, timeout, parameter, wrong cmd)
0 The cmd was successfully received by the device without a reply in reply buffer.

N > 0
The cmd was successfully received and the device answered. The return value is
the answer length in bytes.

 © Copyright 2021, Proceq SA 12

3.2.4.6 PQ_Read ()

long PQ_Read(const unsigned long deviceHandle,

 void *buffer,

 const unsigned long size,

 const long timeout);

Description
Read data from the communication port the device is connected to into the buffer.

The function will return when size bytes are read or when the timeout occurred.

If the timeout occurred, any bytes read before the timeout will be in buffer.

NOTE: You are responsible for the buffer (you have to allocate and free the memory assigned to the
buffer).

Parameters
deviceHandle[IN] The handle to the device you want to read from.
buffer [IN] A pointer (memory address) to the buffer where the read bytes will be stored.
 [OUT] The bytes read from the device.
size [IN] The size of the buffer in bytes.
timeout [IN] The read timeout of the connection in [ms]. The function will return after this

timeout elapsed.
If you specify 0, the bytes already received by the lower layer communication
stack will be returned immediately.
If you specify -1, the default timeout will be used.

Return value
-1 An error (file exception) occurred.
0 No single byte was read before timeout.
> 0 Number of bytes read and transferred to buffer

3.3 The Samples

The provided samples show how you could embed and use PqRemote in your application or in
Microsoft Excel.
The executables are written in C++ and compiled with Visual Studio 2008 as 32 bit applications.

In the Binaries directory you will find the compiled release version of the applications, the Excel
sample and the PqRemote.dll, PqRemoteX64.dll. You can run the samples without the need of
compiling them.

3.3.1 PqRemoteDemoDLL

This sample shows a dialog in which you can play around with the exported functions of
PqRemote.

Most parameter of the functions can be set in the dialog with some exceptions:

 Pq_SendCMD: The reply buffer size is defined in the source code.
 The default timeout is taken.
 Pq_Read: The read buffer size is defined in the source code.

In this sample, the dll is loaded with LoadLibrary(). In case the dll could be loaded, pointer

to the functions of the dll are received with GetProcAddress().

The PqRemote specific code can be found in PqRemoteDemoDLLDlg.cpp

3.3.2 PqRemoteDemoLib

This sample is similar to PqRemoteDemoDLL. But since the import library PqRemote.lib is used
during compile and link time, the functions of PqRemote can be called directly (see

PqRemoteDemolibDlg.cpp).

 © Copyright 2021, Proceq SA 13

NOTE: You still need PqRemote.dll or PqRemoteX64.dll for 64 bit together with your
Application, but the import library is no longer needed once the .exe is built.

3.3.3 DemoRemote

With this tool you can receive and save screen shots from a connected Platform device. It uses

the Remote Command SCSH.

In addition, you can enable the keypad with which key commands can be sent to the indicating

device with the command KEYB.

With the mouse (left mouse button) you can simulate touch events (DemoRemote uses the

command TOUC).

In case you press and hold the <ctrl> key, you are in two finger mode: Press and release the left
mouse button will set the position of the first finger which will be constant and static. You can
now move the mouse, press and hold the left mouse button to set the start position of the
second finger which can be moved for as long as the left mouse button is down. Alternatively
when <ctrl> is pressed, you can use the mouse-wheel to zoom in and out, but make sure the
mouse cursor is not too close to a border of the zoom able area.

With TOUC and KEYB you should be able to remotely control the Platform device, as proved with

DemoRemote.
This sample is not available as source code; you only have the .exe (DemoRemote.exe).
This tool was intentionally programmed for internal use only. You have to use it at your own risk,
we don't claim it's bug-free.

Proceq uses this sample together with a laptop and a beamer for demonstrating the Platform
applications to a big audience. It's useful to get screen shots for manuals or to see what's
displayed in case the LCD of the Platform cannot be read anymore (temperature tests with
temperatures below -10°C).

3.3.4 PqRemoteDemoExcel

This sample demonstrates the usage of PqRemote.dll in Excel. It supports Equotip 3 and
Equotip 550 for now. To run this sample, you have to enable macros. In Excel 2007:
StartExcel OptionsTrust CenterTrust Center SettingsMacro SettingsEnable all
macros.

The sample is written in Visual Basic. To view, debug or change the code, you have to enable
(show) the developer tab. In Excel 2007: StartExcel OptionsPopularShow developer tab
in the Ribbon. There click on Visual BasicModule1 and you should see the code.

Please make sure, the PqRemote.dll is in the same folder as the PqRemoteDemoExcel.xlsm so
that Excel finds the dll.

NOTE: Should you get a Compile Error similar to “Method or Data Member not found”, the
cause is most likely a Microsoft Security Update. There is a patch for it:
http://support.microsoft.com/kb/3025036/EN-US And there just click on “Fix It”. Should the
link here not work, you can search for the knowledge base article KB3025036.

http://support.microsoft.com/kb/3025036/EN-US

 © Copyright 2021, Proceq SA 14

4. Remote commands low level Protocol description

4.1 Preamble

If you are using PqRemote.dll or PqRemoteX64.dll you don't have to read this subchapter. It
describes the low level protocol of the Proceq ASCII remote commands.

This protocol must be followed by programmers who are writing applications for Linux and other
Operating Systems beside Microsoft Windows.

There is no USB driver for other OS than Microsoft Windows, so you have to use Ethernet on
those Operating Systems.

4.2 General Syntax

All commands from the PC to the device start with the ASCII command character <DLE> (0x10,
16 decimal). The device answers always with the character ('>').

It follows a two (legacy commands) or four byte ASCII command code. It is not case sensitive.

Most of the commands have parameters, which are also in ASCII. You can but don't have to
separate the command and the first parameter with a space (' '). Parameter containing text can
be enclosed in quotation marks ('"'). Multiple parameters are separated by semicolons (';') which
can but don't have to be followed by spaces (' ').

Commands which allow requests and settings use the question mark ('?') as request.

The ASCII command from PC to device is ended with a carriage return ('\r').

If echo mode is on, the device answers to the carriage return with a space (' '), then it executes
the command and sends its answer. The answer from the device is terminated with return and
linefeed ("\r\n") if echo mode is on, or with carriage return only ('\r') if echo mode is off.

If the command could not be executed (wrong command, wrong parameter or not allowed due
to wrong activation code or not logged in), the answer from the device will be a question mark
('?').

ASCII character codes:

Character ASCII code hex ASCII code decimal

<DLE> 10 16

\r 0d 13

\n 0a 10

> 3e 62

? 3f 63

<space> 20 32

 © Copyright 2021, Proceq SA 15

4.3 Samples

NOTE:

 The underlined characters are only returned if echo mode is on.

 Sequences separated by | in {} mean alternatives of which exactly one is true.

 Sequences in [] can but don't have to appear.

 Italic words in <> are symbolic parameter names. Their meaning and allowed values will
be explained in the following text.

Ask device identification:

 <DLE>ID\r

 >ID_<InstrName>;_<Version>;_<SNum>\r\n

The device answers its device type <InstrName>, the firmware-version <Version> and the serial

number <SNum>. E.g. Equotip 550;2.1.1;UP01-000-0509

Enable, disable or request echo mode:

<DLE>EC?

>EC_{0|1}\r\n

<DLE>EC{0|1|ON|OFF}\r

>EC{0|1}_[?]\r\n

The first sample asks whether or not echo mode is on.

The second sample sets the echo mode off (EC0 or EC OFF) or on (EC1 or EC ON).

 © Copyright 2021, Proceq SA 16

5. Remote ASCII commands

5.1 General remarks and rules

5.1.1 Affected measurement series

Many commands request or change the settings of a measurement (series).
All of them do only change the current series (and future series) in memory. This means if you
have opened an old series with the explorer, this old series will not be changed persistently.
Example:

Your current measurement series name is 532. Then you open an old series with the name 123

and see the series 123 on the display of the platform. With the command SNAM you will receive

123 and can change it to e.g. TEST. When you leave the explorer view and go back to

measurement view, the series name will be 532 again. When you next time open 123, the

name will still be 123 and not TEST.

5.1.2 Active Probe

Some commands need an active probe (impact device) to be valid. To have an active probe,
make sure you are in the measurement screen, the appropriate probe is connected and
activated (so you can measure with that probe). If you have more than one probe connected,

you can see the active probe with PIDL.

The following commands need an active probe:
PAPV, PHWR, PNAM, PSNO

In case you change settings, they will be stored context related. Therefore it makes sense to
have an active probe of the appropriate type (Portable Rockwell, Equotip Leeb, UCI…) plus the

correct conversion scale and material selected when you change settings (e.g. UPPR, LOWR…)

5.1.3 Missing commands, missing functionality

This documentation, the whole Software Package (PqRemote_V_x_y_z.zip) and the platform
device firmware are subject to change. Most likely changes will be bug fixes, adding more
remote commands and functionality. Therefore it’s good to have the latest version:

 This document is in the document section of the device (as part of the multimedia
package) plus in the Software Package.

 The Software Package can be downloaded from the Proceq homepage
(www.proceq.com) or from the Link Tool provided.

 The firmware update can be started from the Link Tool.

5.2 Overview

Key for the tables below:

RL: Is a successful remote login (RLGI) mandatory to execute this command?

SU: Does the active profile in the device have to be super user? Note: This is always
true for platform applications by now.

LK: Must the device be locked (RLCK) to execute this command?

note: An X in the table means this is required.

http://www.proceq.com/

 © Copyright 2021, Proceq SA 17

5.2.1 Alphabetical list of Platform common commands

These commands should be the same on all Platform applications (Equotip 550, Pundit PL-2,
Profometer PM-6…)

Command Short description RL SU LK

EC Switch the echo mode

ID Get the instrument ID (short form)

@ID@ Get the extended Platform specific instrument ID

DELF Delete a file or directory X X X

DIRS Get the directory structure including file names

DMSG Disable a specific message type

EMSG Enable a specific message type

GETF Load a file to the PC

GPOW Get power info (voltage, current, battery status)

HELP Displays help regarding these commands

IAPV Get the instrument application version

IHWR Get the instrument hardware revision

INAM Get the instrument name

IOSV Get the instrument Operating System version

ISNO Get the instrument serial number

KEYB Lock/unlock the keyboard or simulate a key press

MOVF Move or rename a file or directory X X X

RLCK Lock or unlock the device X X

RLGI Remote login

RLGO Remote logout

SCSH Get a screen shot from the device display

TIME Get/set the current date and time

TOUC Send touch events to the device

 © Copyright 2021, Proceq SA 18

5.2.2 Alphabetical list of Equotip specific commands

These commands are for Equotip devices.

Command Short description RL SU LK

IMPD Get/set the impact direction

LOWR Get/set the lower limit

MATR Get/set the material group

PAPV Get the probe application version

PHWR Get the probe hardware revision

PIDS Get the ID of all connected probes (short form)

PIDL Get the ID of all connected probes (long form), shows active p.

PNAM Get the probe name (e.g. "D")

PSNO Get the probe serial number

SCAL Get/set the conversion scale

SDEV Get the measurement series standard deviation

SERM Save and close the current series of measurements

SLEN Get/set the measurement series length.

SMAX Get the maximum value of the measurement series.

SMEA Get the mean value of the measurement series.

SMIN Get the minimum value of the measurement series.

SNAM Get/set the measurement series name

SNOR Get the number of readings in the meas. series.

SRAN Get the range (max – min) in the measurement series.

SVAL Get a reading of the measurement series.

UPPR Get/set the upper limit

 © Copyright 2021, Proceq SA 19

5.2.3 By function

Measurement
DMSG EMSG IMPD LOWR MATR SCAL SDEV SERM SLEN SMAX SMEA SMIN SNAM

 SNOR SRAN SVAL UPPR

Version
ID @ID@ IAPV IHWR INAM IOSV ISNO PAPV PHWR PIDS PIDL PNAM PSNO

File
DELF DIRS GETF MOVF

Communication
EC HELP

System
GPOW KEYB RLCK RLGI RLGO SCSH TIME TOUC

5.3 Detailed command description

In this subchapter, all commands are described in detail. They are listed in alphabetical order.

In the first line of each command description on the left you see the command, and then a
short description followed by the flags RL, SU, and LK:

<CMD> <Description> RL: SU: LK:

RL: Is a successful remote login (RLGI) mandatory to execute this command?

SU: Does the active profile in the device have to be super user?

LK: Must the device be locked (RLCK) to execute this command?

NOTE: An X means this is required.

In the second table row, the syntax is described. If you can use the command in several ways

(e.g. get, set), each way is listed separately (1. 2. 3.).

The string following Input: is what you have to use as second parameter (cmd) in

PQ_SendCMD().

The string following Output: describes what the device will answer in the third parameter

(reply) of PQ_SendCMD()in case echo mode (see EC) is off.

If none is following Output:, no reply from the device is expected. In this case,

PQ_SendCMD()returns 0 in case of success, -1 or 1 and '?' in case of failure.

NOTE:

 The low level sequences (see 4. Remote commands low level Protocol description) are

handled in PQ_SendCMD() and are not listed here.

 Words in <> are symbolic parameter names. Their meaning and allowed values will be

explained in the following text, mostly in the form of where <param> = …

 ASCII string parameter like <fname> of DELF or <Name> of SNAM can and should be

enclosed with quotation marks ". If you don't, characters are converted to uppercase

and the parser cannot handle some special characters appropriate.
In the third table row, the command is described. Special cases, samples and limitations are
mentioned here.

 © Copyright 2021, Proceq SA 20

EC Switch echo mode RL: SU: LK:

Syntax
1. To switch echo mode on:

 Input: EC 1 or EC ON

 Output: none

2. To switch echo mode off:

 Input: EC 0 or EC OFF

 Output: none

3. To get the current echo mode:

 Input: EC ?

 Output: 0 or 1

Description
To turn echo mode on or off.
If echo mode is on, the device echoes the input before it's answer:
Input: EC ?

Output: EC ? 1

NOTE:

 Echo mode is off by default.

 If echo mode was off and is set on, the echo is turned on after the command (the device
answer is none)

 If echo mode was on and is set to off, the echo is turned off after the command (the

device answers EC 0)

ID Get instrument ID RL: SU: LK:

Syntax
Input: ID

Output: <instrument ID> (e.g. Equotip 550;2.1.1;UP01-000-0509)

where <instrument ID> = instrument name; application version; serial number

Description
Gets basic information about the instrument.
This command is supported by all newer Proceq devices.

Opposing to @ID@, the information fields (instrument name …) are the same for each Proceq

device.

 © Copyright 2021, Proceq SA 21

@ID@ Get extended instrument ID RL: SU: LK:

Syntax
Input: @ID@

Output: <extended instrument ID>

where <extended instrument ID> =

 - instrument name;

 - hardware revision;

 - serial number;

 - signature;

 - application version;

 - OS version;

 - Bootloader version;

 - Multimedia package version;

 - current localization; (TLA)

 - timezone ID (4 Byte integer as ASCII hex with 0x preamble)

Sample output:

 Equotip 550;C1;UP01-000-0509;0D020200;2.1.1;2.1.0;1.2.0;1.0.0;ENU;0x0000053c

Description
Gets extended information about the instrument.
This command returns device specific information fields. The fields listed here are true for
Platform devices.

DELF Delete file RL:X SU:X LK:X

Syntax
Input: DELF "<fname>"

where <fname> = file or directory name with full path

Output: none

Description
To delete a file on the device you are connected to.

NOTE:

 You must be logged in and super user and the device must be locked.

 Use this command with caution, the file gets deleted immediately and cannot be restored!

 Use \\ instead of \ e.g. "\\0D020200\\0D020200.log"

 Use the DIRS command to get the real file names. The file names shown on

device Explorer could be only a part of the real file names.

 To access the measurement series root "\" on Equotip 550, use the folder
"\\0D020200\\measurements\\"

 You can only delete empty directories.

 © Copyright 2021, Proceq SA 22

DIRS Display directory structure RL: SU: LK:

Syntax
1. To get all file types:

 Input: DIRS

 Output: <len>;<flags>;<level>;"<name>";<flags>;<level>;"<name>";...

 where <len> = total answer length (8 char hex)

 <flags> = xyzz: x(1 is directory), y(file flags), zz(file type)

 <level> = 00=root, 01=1 below root, 02= 2 below root...

 <name> = file or directory name

2. To get specific file types:

 Input: DIRS <file type>

 where <file type> = *NOT SUPPORTED BY NOW*, returns 0x0000

 any combination of file types you want to get:

 0x0001 = Measurement series

 0x0002 = Conversions

 0x0004 = Language DLLs

 0x0008 = Help files

 0x0010 = The user profile

 0x0020 = Log files

 Output: <len>;<flags>;<level>;"<name>";<flags>;<level>;"<name>";...

 where All fields as described under 1.

Description
To get information about the files stored in the device. You can either get all files and directories
or a combination of specific file types.
E.g. if you want to get information about the conversion and the language DLL files you send

DIRS 0x0006. FILE TYPES NOT SUPPORTED BY NOW

To save space, the absolute path to each file is omitted. Instead the file and folder structure is
transmitted recursive and the location of a specific file is defined by its level and preceding
directories.
It's best to do a sample. Find below the folder and file structure of a sample Equotip 550 device:

\0D020200\measurements\ Root folder for measurements
 A Subdirectory A

 AA Subdirectory AA below directory A

 7 File 7 in subdirectory AA

 1 File 1 in subdirectory A

 8 File 8 in subdirectory A

 B Subdirectory B

 4 File 4 in subdirectory B

 6 File 6 in subdirectory B

 2 File 2 in measurement root directory

 3 File 3 in measurement root directory

 5 File 5 in measurement root directory

If you send DIRS 0x0001 to the above device, the answer is: 00000000; FILE TYPES NOT

SUPPORTED BY NOW. If you send DIRS, you will get something like this:

000001FC;1000;00;"\";1000;01;"0D020200";1000;02;"measurements";0000;03;"2#_0_1

_2_7893_1_0.eq5";0000;03;"3#_0_1_2_7758_1_0.eq5";0000;03;"5#_0_1_2_7685_1_0.eq

5";1000;03;"A";1000;04;"AA";0000;05;"7#_0_1_2_7781_1_0.eq5";0000;04;"8#_0_1_2_

8521_1_0.eq5";0000;04;"1#_0_1_2_7879_1_0.eq5";1000;03;"B";0000;04;"6#_0_1_2_76

84_1_0.eq5";0000;04;"4#_0_1_2_8427_1_0.eq5";1000;02;"calib";0000;03;"Verif-

ID51-006-0169#_21_1_2_7628_10_1.eq5";0000;03;"Verif-ID51-006-

0169#_39_1_2_7620_10_1.eq5";1000;02;"curves";0000;03;"Standard5.cnv";

 © Copyright 2021, Proceq SA 23

DMSG Disable message RL: SU: LK:

Syntax
1. To disable a specific message <msg>:

 Input: DMSG <msg>

 where <msg> = message type number to disable (1...4)

 Output: none

2. To check if <msg> is disabled:

 Input: DMSG <msg>?

 Output: Y = message is disabled, N = message is enabled.

In Equotip Application version 2.8.0 and newer (above still supported):

3. To disable all supported message types:

 Input: DMSG 9999 Y

 Output: none

Description
Disables a specific message type (or all messages) previously enabled by EMSG.
See EMSG for further information.

 © Copyright 2021, Proceq SA 24

EMSG Enable message RL: SU: LK:

Syntax
1. To enable a specific message <msg>:

 Input: EMSG <msg>

 where <msg> = 1: Limit over-/underrun message

 <msg> = 2: Probe removed/connected message

 <msg> = 3: Begin of measurement procedure message

 <msg> = 4: New measurement (value included) message

 Output: none

2. To check if <msg> is enabled:

 Input: EMSG <msg>?

 Output: Y = message is enabled, N = message is disabled.

In Equotip Application version 2.8.0 and newer (above msg still supported):

1. To enable a specific message <msg>:

 Input: EMSG <msg>

 where <msg> = 0: Error message (value key see separate table)

 where <msg> = 8: The status during a measurement (key see separate table)

 where <msg> = 9: Intermediate values during the measurement

 where <msg> =10: New measurement secondary scale (only if enabled)

 Output: none

3. To enable all supported message types:

 Input: EMSG 9999 Y

 Output: none

SAMPLES:

EMSG 1 = Gives an output if the limits are over- resp. underrun:
<A:HI
<A:LO

EMSG 2 = Probe: Outputs removed/connected probe:
<P:
<P:Equotip Leeb Impact Device D

EMSG 3 = Gives an output at the beginning of a measurement, even when there was an error:
<C

EMSG 4 = Outputs new valid values including Scale and limit over- underruns:
<M:709 HLD +

Even though errors like "Signal not evaluable" are not implemented with App version 2.7.0 and earlier, one
could find out measurement related errors by enabling (1,) 3, 4:

Good measurement:
<C
<M:630 HLD

Above upper limit:
<C
<M:709 HLD +
<A:HI

Error:
<C

 © Copyright 2021, Proceq SA 25

SAMPLES from App Version V2.8.0 and beyond:

Good portable Rockwell measurement with status (<S:) and secondary scale (<M2:) enabled:

<C
<S:4
<S:5
<S:6
<M:9.8 µm
<M2:789 HLD

Bad portable Rockwell measurement with error (<E:) incomplete

<C

<S:4
<E:2

Good UCI measurement with status (<S:), intermediate values (<I:) and secondary scale (<M2:)
enabled:

<C
<S:1
<I:UCI, 0 df, 0 N/100
<I:UCI, 0 df, 0 N/100
<I:UCI, 219 df, 1273 N/100
<I:UCI, 332 df, 1920 N/100
<I:UCI, 522 df, 3169 N/100
<I:UCI, 728 df, 4953 N/100
<S:2
<I:UCI, 837 df, 6084 N/100
<I:UCI, 959 df, 7036 N/100
<I:UCI, 868 df, 3765 N/100
<I:UCI, 394 df, 0 N/100
<I:UCI, 0 df, 0 N/100
<I:UCI, 0 df, 0 N/100
<I:UCI, 0 df, 0 N/100
<I:UCI, 0 df, 0 N/100
<M:807 HLD
<M2:708 HV

Format of <I:<probe type>, <shift frequency>, <force in N/100> where only supported probe type is UCI.

Bad UCI measurement with status (<S:), intermediate values (<I:) and error (<E:) incomplete
<C
<S:1
<I:UCI, 0 df, 0 N/100
<I:UCI, 9 df, 0 N/100
<I:UCI, 632 df, 4057 N/100
<E:2

 © Copyright 2021, Proceq SA 26

Error message codes (message type 0)
For almost all errors, the measurement is aborted and no <M: and <M2: will be issued.

L = supported for Leeb, R = supported for portable Rockwell, U = supported for UCI

Short description L R U Comment

1 Bad measurement X X The only error issued for Leeb measurements, but is not always
issued on way off (air) Leeb measurements (check <C too)

2 Incomplete X X The measurement did not pass/go successful through all steps

3 Thin X The material is considered too thin, measurement not possible.

4 Overload X The applied force is too high

5 Idle frequency X Bad measurement

6 Premature X Bad measurement

7 Communication X Communication error with UCI probe

8 Material X The material is considered too soft

9 Init X A reinitialization of the probe seem to be necessary. This only
occurs if the past measurements all failed. Note: once issued, this
requires user action on device!!! Must not happen in automation or
you can try to answer using TOUC.

10 Excessive load X Too much force was applied, apply less load or the probe might
be seriously damaged.

11 Too less samples X

12 Too fast down X

13 Too fast released X

14 Vibration warning X This is only a warning, so the measurement is considered valid.

Status message codes (message type 8)
R = supported for portable Rockwell, U = supported for UCI (Leeb does not have any monitored states)

Short description R U Comment

0 Idle X Before/at start of a measurement, is not sent remotely

1 Touches X The probe touches the material under test

2 Force applied X The required force is applied

3 Init done X The probe is reinitialized after error init (see there)

4 Hold X Hold the probe with current force in current position

5 Release X Release the probe from the material under test

6 Finished X The measurement is finished

Description
To enable / activate asynchronous messages of a specific type.
Once enabled, the device sends information over the interface for which the message was
enabled, as soon as the event (e.g. new measurement) occurred.

To get that information, you have to check for incoming data with PQ_Read() or a lower layer
function in case you don't use Pq_Remote in your application.

IMPORTANT NOTE:
Because the measurement, UI (and other) tasks in the device have higher priority than the
communication task, we cannot guarantee a maximum latency time! This means a status
message to e.g. release the force might be received with a delay of seconds. Make sure you
take this into account within your project.

 © Copyright 2021, Proceq SA 27

GETF Load a file to the PC RL: SU: LK:

Syntax
Input: GETF <fname>

where <fname> = the full filename inclusive path

Output: <len> [end ASCII reply] <blen><file>

where <len> = file length in ASCII hex

 <blen> = file length (4 byte binary)

 <file> = the file (binary data stream)

Description
To load a file, usually a measurement series, from the device to the PC.

You will receive <len> in the reply of PQ_SendCMD() and <blen> and <file> in the following call to
PQ_Read()

NOTE

 Use \\ instead of \ e.g. "\\0D020200\\0D020200.log"

 Enclose <fname> with quotation marks ".

 Use DIRS to get the list of available files.

GPOW Get power info RL: SU: LK:

Syntax
Input: GPOW <param>

where <param> = 0: allow cached values

 <param> = 1: force refresh of values

 <param> = : default behaviour (0)

Output: <bV>;<bI>;<bT>;<blp;<bF>;<bC>;<aS>

where <bV> = battery Voltage in ASCII dec eg. 3765 mV

 <bI> = battery Current in ASCII dec eg. 1370 mA

 <bT> = battery Temperature in ASCII dec eg. 40.2 °C

 <blp> = battery life percent in ASCII dec eg. 68

 <bF> = battery flags BATTERY_FLAG_UNKNOWN,BATTERY_FLAG_HIGH,

 BATTERY_FLAG_LOW,BATTERY_FLAG_CRITICAL,

 BATTERY_FLAG_CHARGING

 <bC> = battery chemistry BATTERY_CHEMISTRY_LION, WRONG_VALUE

 <aS> = AC line status AC_LINE_UNKNOWN,AC_LINE_OFFLINE,AC_LINE_ONLINE

Description
To get information about the power status of the device.

NOTE

 In case the AC adapter is connected (AC_LINE_ONLINE), battery flags and battery life

percent cannot be evaluated

 © Copyright 2021, Proceq SA 28

HELP Displays help on ASCII commands RL: SU: LK:

Syntax
1. To get a command overview:

 Input: HELP

 Output: none to PQ_SendCMD(), the available Commands to PQ_Read()

2. To get detailed help on a specific command:

 Input: HELP <cmd> (e.g. HELP IMPD)

 Output: none to PQ_SendCMD(),

 the detailed help for <cmd> to PQ_Read()

Description
To get help on the available ASCII commands.
This is especially helpful if you play around with PqRemoteDemoxxx.exe

NOTE

 We can not send the output to PQ_SendCMD(), because the answer from the device
contains several \r\n escape characters. Each of those stops parsing the answer.
You will receive the answer with PQ_Read().

IAPV Get the application version RL: SU: LK:

Syntax
Input: IAPV

Output: instrument application version (e.g. 1.5.0)

Description
To get the version of the currently running application.
You can upgrade / check the latest Application with PqUpgrade (out of the Link tool).

IHWR Get the hardware revision of the instrument RL: SU: LK:

Syntax
Input: IHWR

Output: instrument hardware revision (e.g. A3)

Description
To get the hardware revision of your indicating device.

 © Copyright 2021, Proceq SA 29

IMPD Get/set impact direction RL: SU: LK:

Syntax
1. To set impact direction:

 Input: IMPD <Direction>

 where <Direction> = A: automatic determination of direction

 <Direction> = 0: vertical down

 <Direction> = 45: diagonal down

 <Direction> = 90: horizontal

 <Direction> = 135: diagonal up

 <Direction> = 180: vertical up

 Output: none

2. To get impact direction:

 Input: IMPD ?

 Output: <Direction> (values see above)

Description
If you set a new impact direction, it will affect future measurements, but it will not affect the last
measurement (direction is stored for each measurement).

INAM Get the instrument name (type) RL: SU: LK:

Syntax
Input: INAM

Output: instrument name (e.g. Equotip 550)

Description
To get the name / type of your indicating device.

IOSV Get the instrument OS version RL: SU: LK:

Syntax
Input: IOSV

Output: instrument OS version (e.g. 1.1.5)

Description
To get the operating system version of your indicating device.

ISNO Get the instrument serial number RL: SU: LK:

Syntax
Input: ISNO

Output: instrument serial number

 e.g. UP01-000-0509-14/3P

 where 14 = year of production, 3P = quarter of production +

producer)

Description
To get the serial number of your indicating device.

 © Copyright 2021, Proceq SA 30

KEYB Keyboard I/O RL: SU: LK:

Syntax
1. To lock resp. unlock the instrument keyboard:

 Input: KEYB LO[CK] resp. KEYB UN[LOCK]

 Output: none

2. To simulate a key press with fixed short pressed duration:

 Input: KEYB <Key>

 where <Key> = OFF: simulate pressing the ON/OFF/HOME key

 <Key> = DISP: simulate pressing the DISPLAY key

 <Key> = BACK: simulate pressing the BACK key

 Output: none

3. To simulate a key press with remote controlled pressed duration:

 Input: KEYB A:PRESS;<Key> press down <Key>

 Input: KEYB A:RELEASE;>Key> release <Key>

 Output: none

Description
With this command you can simulate the device keyboard and therefore remotely control the

device e.g. together with SCSH.

This command is used in the sample DemoRemote.exe

NOTE:

 If you locally lock the keyboard with KEYB LO, keypresses sent with KEYB will still be

processed.

 If you use the remote controlled pressed duration, make sure you don't forget to release
the key!

LOWR Get/set lower limit RL: SU: LK:

Syntax
1. To set lower limit:

 Input: LOWR <Limit>

 where <Limit> = OFF: no limitation

 <Limit> = xxx[.x]: limit value

 Output: none

2. To get lower limit:

 Input: LOWR ?

 Output: <Limit> (values see above)

 <Limit> = noCnv: conversion not possible

Description
If you set the lower limit, it will affect all measurements in the current series (and future series),
also the ones already measured.

 © Copyright 2021, Proceq SA 31

MATR Get/set material RL: SU: LK:

Syntax
1. To set material:

 Input: MATR <Mat>

 where <Mat> = 1,2, ..., 12: standard material group

 <Mat> = C:"<MatName>" customer defined conversion

 Output: none (=ok) or ? in case of error

2. To get material:

 Input: MATR ?

 Output: <Mat> (values see above)

Description
This will behave as if you change the material locally. Only materials will be accepted which are
valid for the current probe and scale. If you try to set an invalid material, you’ll get an error (?).

Make sure you are in the measurement mode/screen with an activated probe and do not have
the Measurement Settings open when using MATR. Else this command will not work properly.

MOVF Move/rename a file or directory RL:X SU:X LK:X

Syntax
Input: MOVF "<fnam>";"<new fnam>"

where <fnam> = the existing file or directory + full path

 <new fnam> = the new location and or name

Output: none

Examples:

movf "\\0D020200\\measurements\\A\\AA\\";

 "\\0D020200\\measurements\\A\\AB\\" this renames AA in AB

movf "\\0D020200\\measurements\\A\\AB\\";

 "\\0D020200\\measurements\\AB\\" moves AB plus content one up

Description
You can also move/rename a directory that is not empty.

NOTE:

 Make sure you are logged in, super user and the device is locked, else you receive?

PAPV Get the probe application version RL: SU: LK:

Syntax
Input: PAPV

Output: probe application version (e.g. 0.3.1)

Description
To get the hardware revision of the connected and activated probe. Will return an empty string if
no probe is connected and activated or the probe has no firmware.

 © Copyright 2021, Proceq SA 32

PHWR Get the probe hardware revision RL: SU: LK:

Syntax
Input: PHWR

Output: probe hardware revision (e.g. A0)

Description
To get the hardware revision of the connected and activated probe. Will return an empty string if
no probe is connected and activated.

PIDS Get short ID of all connected probes RL: SU: LK:

Syntax
Input: PIDS

Output: [< probe ID>][;<probe ID>]…

where < probe ID> = probe name; firmware version; serial number

Sample output:

 Equotip Leeb Impact Device D;;ID51-006-0169;Portable Rockwell

 Probe;0.3.1;ES01-000-0009

Description
Gets basic information about all the connected probes.

PIDL Get long ID of all connected probes RL: SU: LK:

Syntax
Input: PIDL

Output: [<extended probe ID>][;<extended probe ID>]…

where <extended probe ID> =

 - probe name; [active]= this is the active probe in use

 - hardware revision;

 - serial number;

 - signature;

 - firmware version;

Sample output:

 Equotip Leeb Impact Device D [active];A;ID51-006-0169;81-00000-0;;Portable

 Rockwell Probe;A2;ES01-000-0009;08000000;0.3.1

Description
Gets extended information about all the connected probes.
This command returns device application specific information fields. The fields listed here are
true for Platform Equotip probes.

PNAM Get the probe name (type) RL: SU: LK:

Syntax
Input: PNAM

Output: probe name (e.g. D)

Description
To get the name / type of your connected and activated probe. Will return an empty string if no
probe is connected and activated.

 © Copyright 2021, Proceq SA 33

PSNO Get the probe serial number RL: SU: LK:

Syntax
Input: PSNO

Output: Probe serial number

 e.g. ID51-006-0169

Description
To get the serial number of the connected and activated probe. Will return an empty string if no
probe is connected and activated.

RLCK Lock / unlock the device RL:X SU:X LK:

Syntax
1. To lock the device:

 Input: RLCK ON

 Output: ON

2. To unlock the device:

 Input: RLCK OFF

 Output: OFF

3. To get the current lock state:

 Input: RLCK ?

 Output: ON or OFF

Description
To lock the device. This will pop up a dialog and any local input will be blocked. This command is

only needed for few critical remote commands like DELF or MOVF

NOTE:

 Must be logged in and super user.

RLGI Remote login RL: SU: LK:

Syntax
Input: RLGI [<UserName>] [;<Password>] [;<Timeout>]

Output: <User Name>;<Flags>

where <Flags>: 0001 = The active user has a password

 0002 = The active user is a super user (administrator)

 0004 = The login was successful

 <Timeout>: automatically logout after <Timeout> in[ms]

Description

To remotely log into the device. Is needed for few critical remote commands like DELF or MOVF

NOTE:

 For all platform devices UserName and Password can be empty. E.g. RLGI is enough.

 Any login attempt to a not active user is rejected.

 Multiple <Flags> can be combined. E.g 0006 means super user and logged in.

 If the active user has no password defined, sending RLGI without parameters will be

enough to log in.

 If you specify a timeout, RLGI must be sent before timeout to reset the automatic logout

timer. If you don't specify a timeout, you will remain logged in as long as the device

doesn't shut down or you didn't send RLGO

 © Copyright 2021, Proceq SA 34

RLGO Remote logout RL: SU: LK:

Syntax
Input: RLGO

Output: none

Description
To remotely log out.

SCAL Get or set the conversion scale RL: SU: LK:

Syntax
1. To set scale:

 Input: SCAL <Scale>

 where <Scale> = "HB", "HV", "HRC", "um", "in/1000"...

 Output: none (ok) or ? in case of invalid scale

2. To get scale:

 Input: SCAL ?

 Output: <Scale> (values see above)

Description
This will behave as if you change the scale locally. Only scales will be accepted which are valid
for the current probe and material. If you try to set an invalid scale, you’ll get an error (?).

In case you use a portable Rockwell probe and use metric system, you can send SCAL "in/1000"
and it will switch to imperial and native scale. The same is true if you use imperial and send
SCAL "um", it will switch to metric and native scale.

Make sure you are in the measurement mode/screen with an activated probe and do not have
the Measurement Settings open when using MATR. Else this command will not work properly.

NOTE: The scale is case sensitive, so use ". E.g. SCAL um will receive ?, SCAL "um" will work.

 © Copyright 2021, Proceq SA 35

SCSH Screen shot RL: SU: LK:

Syntax
1. To get the screen shot:

 Input: SCSH

 Output: <param>;<len> [end ASCII reply] <bparam><blen><bimage>

 where <param> = ASCII hex bitfield to set image parameters:

 0000 = BMP bitmap

 0001 = GIF bitmap

 <len> = the length in ASCII hex of the following bitmap

 <bparam> = the param, see above (2 byte binary)

 <blen> = the length of the bitmap (4 byte binary)

 <bimage> = the raw image data of the screenshot

 (binary byte stream)

2. To get the current param settings

 Input: SCSH ?

 Output: <param> = ASCII hex bitfield with current image parameters

3. To set the current param settings

 Input: SCSH <param>

 where <param> = ASCII hex bitfield with the new image parameters

 Output: none

Description
To transfer a screen shot to the PC. The ASCII output will be received in PQ_SendCMD(), the
binary part must be read out afterwards with PQ_Read().
This command is used in the sample DemoRemote.exe

SDEV Measurement series standard deviation RL: SU: LK:

Syntax
Input: SDEV ?

Output: Series standard deviation or ? or noCnv when conversion not possible

Description
To delete a (specific) measurement.

NOTE:

 SDEV will be rejected ('?') when no readings are available in the series.

 If only one measurement is available, SDEV will answer with ('-')

 Series can be open or closed.

SERM Close and save current series of measurements RL: SU: LK:

Syntax
Input: SERM CLOSE

Output: none or ? in case of error

Description
Saves and closes the current measurement series and starts a new one.

NOTE:

 Only works if you are in measurement mode and the current series has at least one
measurement.

 © Copyright 2021, Proceq SA 36

SLEN Get/set series length RL: SU: LK:

Syntax
1. To set an unlimited series length (i.e. series have to be closed manually):

 Input: SLEN -

 Output: none

2. To set a specific series length:

 Input: SLEN <Length>

 where <Length> = 1 .. 9999

 Output: none

3. To get the series length:

 Input: SLEN ?

 Output: <Limit> (- or 1 .. 9999)

Description
The series length is the number of measurements until the series is closed automatically.

NOTE:

 When you set SLEN to a specific length, auto close series action will be set to save and
next.

 When you set SLEN to unlimited, auto close series will be set to save. See SERM for
remote save and close a series with unlimited length.

 Closing and saving the series takes some time. Delay the next measurement
accordingly.

 If you change SLEN, it will not affect an already closed series.

 If you change SLEN to a value smaller than the actual measurement number of an open
series, the actual series will not be closed automatically.

 See SNOR, too.

SMAX Get the series maximum value RL: SU: LK:

Syntax
Input: SMAX ?

Output: Series maximum value or --- or noCnv or ? when conversion is not

 possible

Description
NOTE:

 SMAX will be rejected when no readings are available in the series.

 Series can be open or closed.

SMEA Get the series mean RL: SU: LK:

Syntax
Input: SMEA ?

Output: Series mean value or --- or noCnv or ? when conversion not possible

Description
NOTE:

 SMEA will be rejected when no readings are available in the series.

 Series can be open or closed.

 © Copyright 2021, Proceq SA 37

SMIN Get the series minimum value RL: SU: LK:

Syntax
Input: SMIN ?

Output: Series minimum value or --- or noCnv or ? when conversion is not

 possible

Description
NOTE:

 SMIN will be rejected when no readings are available in the series.

 Series can be open or closed.

SNAM Get/set series name RL: SU: LK:

Syntax
1. To set the series name:

 Input: SNAM "<Name>"

 Output: none

2. To get the series name:

 Input: SNAM ?

 Output: <Name>

Description
NOTE:

 When a series is already saved, it will not be resaved after setting a new name.

 Some characters are not allowed: "/:*<\>|

SNOR Get series number of readings RL: SU: LK:

Syntax
Input: SNOR ?

Output: Series number of readings

Description
NOTE:

 noCnv measurements are also counted.

 See SLEN, too.

SRAN Get series range RL: SU: LK:

Syntax
Input: SRAN ?

Output: Series range or noCnv when conversion not possible

Description
NOTE:

 SRAN will be rejected when no readings are available in the series.

 © Copyright 2021, Proceq SA 38

SVAL Get a reading / measurement RL: SU: LK:

Syntax
1. To get the latest reading of the current series:

 Input: SVAL ?

 Output: value of the reading

2. To get a specific reading of the current series:

 Input: SVAL <index>

 where <index> = 1 .. number of readings

 Output: value of the reading or noCnv when conversion not possible

Description
NOTE:

 SVAL will be rejected when no readings are available in the series.

TIME Get/set date and time RL: SU: LK:

Syntax
1. To get the current date/time of the instrument:

 Input: TIME

 Output: date and time in the format <dd>-<mmm>-<yyyy>; <hh>:<mm>:<ss>

 e.g. 07-JUL-2008; 08:50:22

2. To set the current date/time of the instrument:

 Input: TIME <dd>-<mmm>-<yyyy>; <hh>:<mm>:<ss>

 Output: none

Description
It is the local time you get/set, not UTC, GMT.

 © Copyright 2021, Proceq SA 39

TOUC Simulate device touch events RL: SU: LK:

Syntax
Input: TOUC <o>;<n>;<x0>;<y0>;…;<xi>;<yi>

Output: none or ? in case of error

 where <o> = number of fingers pressed before (old)

 <n> = number of fingers pressed now (new)

 <x0> = x coordinate of first finger (0..65535)

 <y0> = y coordinate of first finger (0..65535)

 <xi> = x coordinate of ith finger (0..65535), i = max(o,n)

 <yi> = y coordinate of ith finger (0..65535), i = max(o,n)

Description
This command sends touch events to the device.

Samples:

TOUC 0;1;<x0>;<y0> = One finger is pressed

TOUC 1;1;<x0>;<y0> = One finger is still pressed and has moved

TOUC 1;0;<x0>;<y0> = One finger has left the screen (been released)

TOUC 1;2;<x0>;<y0>;<x1>;<y1> = One finger was and a 2nd is newly pressed

NOTE:

 The top left of the screen maps to coordinates (0,0) the bottom right maps to
(65535,65535).

 When fingers are released (e.g. TOUC 1;0;<x0>;<y0> or

TOUC 2;0;<x0>;<y0>;<x1>;<y1> or TOUC 2;1;<x0>;<y0>;<x1>;<y1>), you send the

last known, old coordinates of the finger(s). In all other cases, you send the actual
coordinates.

UPPR Get/set upper limit RL: SU: LK:

Syntax
1. To set upper limit:

 Input: UPPR <Limit>

 where <Limit> = OFF: no limitation

 <Limit> = xxx[.x]: limit value

 Output: none

2. To get upper limit:

 Input: UPPR ?

 Output: <Limit> (values see above)

 <Limit> noCnv: conversion not possible

Description
If you set the upper limit, it will affect all measurements in the current series (and future series),
also the ones already measured (it's stored once per series).

820 356 07 ver 2021

